Water Quality Protection Report

Keyrock Energy, LLC
Jones Treatment Facility
NPDES PA 0219339
Black Lick Township, Indiana County

April 9, 2013

Prepared by:

Elizabeth Farley
Clean Water Program
PA Department of Environmental Protection
400 Waterfront Drive
Pittsburgh, PA 15222
(412) 442-4000

<u>Project</u>	Description: New	Existin	g/Renewal Amendment Transfer
A.	NPDES Application/Permit No. Part II Permit No. 3202021	PA0219339	
В.	Applicant: Keyrock Energy, LLO	C	Municipality: Black Lick
	Facility: Jones Treatment Fac		County: Indiana County
C.	Type of Waste(s):	rial Sewag	e Storm water Mine / Oil & Gas Extraction
D.	Facility Classification: Major	or Minor	E. U.S.G.S. Quad(s): Blairsville, PA
F.	SIC Code(s): 1311	G.	NAICS Code(s): 21 Subsector 211
Water L	Jses and Criteria:		
A.	Receiving Water: Blacklick Cree	k	Stream Code: 43979 Reach Code: 05010007000138
	Drainage Area: 409.8	mi ² , Yield: 0.0 4	19 cfs/mi ² , Flow: 24.01 ft ³ /s (Q_{7-10} low-flow)
	Based on data from: USGS Gage	#03043000 Blacklick Cre	eek at Blacklick, PA and USGS Streamstats (streamstats.usgs.gov)
	Elevation: 994	ft, Slope: 0.000	12 ft/ft, Existing / Designated Use: TSF
	Aquatic Life Use Attainment Status:	Attaining [Non-attaining Unassessed/Undetermined
	Stream Listing Date: 2005	Impairment Causes:	Abandoned Mine Drainage
	Expected TMDL Date: January 2010	Impairment Sources:	Metals
	Exceptions to standard uses: None Add:	,	Exceptions to specific criteria: None Add:
	Delete:		Delete:
	Impoundment:		Special uses:
В.	Secondary Water: Conemaugh R	ver	Stream Code: 43832 Reach Code: 05010007000004
	Drainage Area:	mi ² , Yield:	cfs/mi ² , Flow: ft ³ /s (Q ₇₋₁₀ low-flow)
	Based on data from:		
	Elevation:	ft, Slope:	ft/ft, Existing / Designated Use:
	Aquatic Life Use Attainment Status:	Attaining [Non-attaining Unassessed/Undetermined
	Stream Listing Date: N/A	Impairment Causes:	
	Expected TMDL Date: N/A	Impairment Sources:	
	Exceptions to standard uses:		Exceptions to specific criteria: None
	Add:		Add:
	Delete:		Delete:
	Impoundment:		Special uses:
C.	Downstream PWS location: Buffa Stream name: Allegheny River	alo Township Municipal	Authority Freeport RMI: 29.4 Distance from discharge: 46.5 Miles

Outfalls:
Outfall 001 Lat. 40° 27′ 59.61″ Long. 79° 17′ 21.12″ RMI: 2.23 Stream Blacklick Creek
Average Discharge Flow Rate: 0.04 MGD Based on data from: Module 3 of NPDES Permit Application
Treatment System Description: Sedimentation basins for passive aeration, oxidation and settling.
Discharge Sources and Characteristics: Coal bed methane extraction production water.

1.25

Mgd

Intake:

 ft^3/s ,

Stream flow at intake:

Technology Limit

- Section 304(b) of the Federal Clean Water Act (CWA) requires technology limits to be considered.
- Section 301(b)(2)(C) of the CWA requires compliance with best available technology (BAT) by March 31, 1989
- Sections 304(b)(2)(B), 304(b)(4)(B), and 402(a)(1) of the CWA allow for the establishment of effluent limits on a case-by-case basis (Best Professional Judgment or BPJ).
- 40 CFR 125.3(d) requires that six factors be considered in developing effluent limits based on BPJ. For BAT, they are:
 1) the age of the equipment and facility, 2) the process employed, 3) the engineering aspects of the application of various types of control techniques, 4) process changes, 5) the cost of achieving such effluent reduction and, 6) non-water quality environmental impact (including energy requirements).
- PA Code Chapter 95.10 gives effluent standards for total dissolved soilds.
- The Oil & Gas Wastewater Permitting Manual gives technology based effluent limits for oil and gas well operations discharging water from an "off-site" treatment facility.

Jones Treatment Facility ("Jones") is an existing treatment facility for the treatment of water generated by dewatering coal seams from which methane gas will be extracted. This is also known as coal bed methane extraction. Many wells produce water from this activity in a given area and that water is conveyed via a pipe to a treatment facility. This is not a centralized waste treatment facility as defined by 40 CFR 437 because, "wastewater from the treatment of wastes received from off-site via conduit (e.g., pipelines, channels, ditches, trenches, etc.) from the facility that generates the wastes unless the resulting wastewaters are commingled with other wastewaters subject to this provision" are not subject to the CWT effluent limit guideline as described in the applicability section of 40 CFR 437. Water from coal bed methane production with similar characteristics is merely conveyed to treatment facility.

40 CFR 435 prohibits discharge of oil and gas production fluids from wells to surface waters of the commonwealth unless the wastewaters are removed to an "off-site" treatment facility. Off-site is defined as a central wastewater collection and treatment facility associated with a multiple well operation. Therefore, the production wastewater from individual coal bed methane wells to a central wastewater treatment facility. Only coal bed methane production wastewater is accepted; it is not comingled with any other wastes. The production water is subject to the provisions in the oil & gas wastewater permitting manual (OGPM).

The OGPM stipulates technology based effluent limitations as least as stringent as the following:

Parameter	Minimum	Average Monthly	Instantaneous Maximum
Total Suspended Solids	-	30	60
(mg/L)			
Oil and Grease (mg/L)	-	15	30
Iron, Total (mg/L)	-	3.5	7.0
Acidity (mg/L)	-	Less than Alkalinity.	
pH (STU)	6	-	9

Table 1: Technology based effluent limitations from the Oil & Gas Wastewater Permitting Manual

Additionally, the OGPM stipulates that the treatment facilities must incorporate the following:

- Flow equalization to ensure optimum treatment efficiency of the facilities and minimization of water quality impacts.
- Gravity separation and surface skimming, or equivalent technology, for oil and grease removal.
- Chemical addition for pH control and metals removal, if necessary (a pH range of 8.0-8.5 is desirable).
- Aeration, or equivalent technology, for reducing volatile petroleum hydrocarbons and oxidation for metals removal.
- Settling (retention) or filtration for removal of solids, including oxidized metals.

This facility is also subject to the effluent standard for Total Dissolved Solids (TDS) set forth in PA Code Chapter 95.10. This facility is not considered a new or expanding mass load as it was an authorized discharge prior to August 21, 2010. In the previous permit application the average and maximum discharge flows were reported in Module 3 of the permit application to be 0.04 and 0.6 MGD, respectively. Likewise, the average and maximum concentration of TDS were reported on module 4 of the permit application. Using this data an average and maximum TDS loading can be calculated, please see attached calculations. This is the authorized loading. It will be included as a special condition in the permit. If Jones

discharges over this loading it will be considered an expanding load and must be reevaluated under Chapter 95.10. The average and maximum loadings are shown below.

Parameter	Average Monthly	Maximum Daily
Total Dissolved Solids (lb/day)	1,731	29,524

Table 2: TDS effluent standards based on Chapter 95.10.

Water Quality Limit

- Section 302(a) of the Federal Clean Water Act (CWA) allows establishment of water quality limits.
- Section 303(a)(1) of the CWA allows States to adopt water quality standards.
- Section 303(d) of the CWA requires States to designate water uses (Chapter 93 of the Department's Rules and Regulations).
- Section 303(c) of the CWA requires States to develop water quality criteria (Chapters 16 and 93).
- Wasteload allocations stipulated in the Kiskiminetas-Conemaugh River Watersheds TMDL.
- PENTOXSD version 2.0c for Windows® is a single discharge, mass-balance water quality modeling program that includes consideration for mixing, first-order decay and other factors to determine recommended water quality-based effluent limitations for toxic substances and several non-toxic substances.

Outfall 001 discharges are evaluated for water quality impacts using PENTOXSD version 2.0c. Parameters selected for analysis include those given technology-based effluent limitations in Section I and any other parameters that were reported in the sample included in Appendix B of the permit application entitled October 13, 2008 Connate Water Sampling Program and Analytical Results. The sample taken out the outlet of pond 2 after the water has been treated was used for the analysis. The parameters analyzed were total iron, dissolved iron, aluminum and barium. No water quality based effluent limitations are needed based on this analysis. Additionally, mass balance calculations were performed for osmotic pressure and the necessary effluent limitation is shown in table 3, below.

Finally the discharge from this operation is subject to the Kiskiminetas-Conemaugh River TMDL, finalized January 29, 2010. Outfalls 001 existed at the time the TMDL was created and received wasteload allocations therein. Additionally, monitoring requirements for dissolved iron and chloride will be included as these are parameters of concern. The applicable water quality based effluent limitations are shown in table 3, below.

Pollutant	Monthly Average	Daily Maximum
Iron (mg/L)	1.5	2.94
Aluminum (mg/L)	0.48	0.75
Manganese (mg/L)	0.64	1.0
Chloride (mg/L)	Report	Report
Dissolved Iron (mg/L)	Report	Report
Osmotic Pressure (mOs/kg)	204	319

Table 3: Water quality based effluent limitations from mass balance calculations and Kiskiminetas-Conemaugh River TMDL.

III Storm Water

The Department's policy for storm water discharges is to either (1) require that the storm water be uncontaminated, (2) impose "monitor and report," establish effluent goals and require the permittee to submit a Storm Water Pollution Prevention Plan (SWPPP), or (3) impose effluent limits. In all cases a storm water special condition is placed in the permit. Scottdale does not have any outdoor industrial activity. As described by Module 14 of the permit application they are eligible for no exposure certification for discharges of storm water associated with industrial activities.

Effluent Limitations and Monitoring Requirement

- Section 301(b)(1)(C) of the Federal Clean Water Act (CWA) allows for the establishment of effluent limits that are more stringent than technology-based limits.
- 40 CFR 125.62 requires States to establish a monitoring program (i.e., sample type, monitoring frequency).
- Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l).
- Sampling frequencies are based on Chapter 7 of the NPDES Permit Writer's Manual.
- The requirement to monitor flow is from 25 Pa. Code Chapter 92.41(c)(1).
- Technology limits in Section I are compared to the water quality limits in Section II. The more stringent of the two will be imposed.

Conclusions and Recommendations

Both technology and water quality effluent limits will be applied. Flow will be restricted to the design flow reported in the permit application. A monitoring requirement for chloride will be included due to anti-backsliding. Flow should be measured daily. Grab samples can be collected twice per month for total suspended solids, oil & grease, iron (dissolved), acidity, alkalinity, osmotic pressure, total dissolved solids and chloride. Once per week flow weighted composite samples should be collected for iron, aluminum and manganese. The final limits are shown in table 4 below.

Parameter	Limit Basis					
Industrial Wastewater	(Tech/WQ)	Monthly Avg.	Daily Max	Monthly Avg.	Daily Max.	Inst. Max.
Flow (MGD)	Technology	Report	0.6			
Total Suspended Solids (mg/L)	Technology			30		60
Oil and Grease (mg/L)	Technology			15		30
Iron, Total (mg/L)	Water Quality			1.5	2.94	
Manganese (mg/L)	Water Quality			0.64	1.0	
Aluminum (mg/L)	Water Quality			0.48	0.75	
Iron, Dissolved (mg/L)	Water Quality			Report		
Osmotic Pressure (mOs/kg)	Water Quality			204	319	
Alkalinity (mg/L)	Technology			Greater than ac	cidity.	
Acidity (mg/L)	Technology			Report		
Total Dissolved Solids (mg/L)	Technology	Repo	rt	Rep	ort	
Chloride (mg/L)	Water Quality	Repo	rt	Rep	ort	
pH (STU)	Technology			Within a range of	6.0 to 9.0.	

Table 4. Effluent limitations for Outfall 001.

Effluent limitations rationale:

- 1. Guidelines/References: NPDES Permit Writer's Manual, Oil & Gas Wastewater Permitting Manual
- 2. Regulations: 25 Pa. Code Chapter(s) 16, 92, 93, and 95
- 3. Water quality computer models: PENTOXSD for Windows v2.0c

Αp	provals:	
----	----------	--

Reviewer: Permits/WQ	Date
Chief: Permits/WQ	Date

V References

Stick Diagram for Jones Treatment Facility

PENTOXSD

Modeling Input Data

Strea Cod		Elevation (ft)		rainage Area (sq mi)	Slope	PWS (m	With gd)			Apply FC	_			
439	79 2.23	994	1.00	409.80	0.0001	2	0.00			V				
							Stream D	ata						
	LFY	Trib Flow	Strear Flow		Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tribut</u> Hard	ary pH	<u>Strear</u> Hard	<u>n</u> pH	Anatys Hard	s <u>is</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.049	0		0	0 0	0	0	0	100	7	0	. 0	0	0
Qh		0		0	0 0	0	0	0	100	7	0	0	0	0
							Discharge I	Data						
	Name	Perm Numb	er	xisting F Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor		CFC PMF	THH PMF	CRL PMF	Dîsc Hard	Disc pH	
			((mgd)	(mgd)	(mgd)						(mg/L)		
Key	yrock Jones	PA0219	339	0.04	0.6	0.6	0	0.25	0.25	0.25	0.25	100	7	
					ì	Р	arameter l	Data						
· · ·	Parameter	Name		Disc Conc		Dail C\	y Hour	ly Cor	no CV	n Fate Coe		Crit Mod	Conc	
ALUMIN	ALL IN A			(µg/L)		.)	E 0	(µg. 5 C		0	. 0	1	(µg/L) 0	
BARIUN				333 3380		. 0.				0	0	1	. 0	
	VI LVED IRON			46	, ,	0.				0	0	1	0	
TOTAL				125		0.			-	0	0	1	0	

Strea Cod		Elevati (ft)		iinage Area q mi)	Slope	PWS (m	With gd)		,	Apply FC				
439	79 1.12	99	2.00	415.00	0.00012	?	0.00			\mathbf{V}	-			
•							Stream I	Data						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tribut</u> Hard	ery PH	<u>Strear</u> Hard	<u>m</u> pH	<u>Analys</u> Hard	<u>is</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/ <u>L</u>)		(mg/L)		(mg/L)	
Q7-10	0.049	0	C	0	0	0	0	0	100	7	0	0	0	0
Qh		0	C) 0	0	0	0.	0	100	7	0	0	0	0
•							Discharge	Data				-		
,	Name	Pem Numi	ber D	isc	ermitted Disc Flow	Design Disc Flow	Reserv Factor		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(n	ngd) ((mgđ)	(mgd)		-				(mg/L)		
_				0	0	. 0	0	0	0	0	0	100	7	_
						P	arameter	Data						
	Parameter N	lame		Disc Conc	Trib Co	nc Dis Dail C\	y Hou	rty Con		n Fate Coe		Crit Mod	Conc	
				(µg/L)	(µg/L			(μg/					(µg/L)	
ALUMII				0	0	0.				0	0	- 1	0	
BARIU				0	0	0.				0	0	1	0	
	LVED IRON	•		0	0	0			_	. 0	.0	1	0	
TOTAL	IKON			0	0	. 0	.5 0.	5 0	. 0	. 0	.0		U	

PENTOXSD Analysis Results Hydrodynamics

<u>s</u>	WP Basir	<u>1</u> ·	Stream	n Code:			Strea	m Name			
	18D		43	3979			BLACKL	ICK CRE	EK		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7	-10 Hy	irodyn	amics			
2.230	20.0802	0	20.0802	0.9282	0.00012	1.01367	91.7802	90.5425	0.22581	0.3004	943.497
1.120	20.335	0	20.335	, NA	0	0	0	0	. 0	0	NA
			•		Q	h Hydr	odynar	nics			
2.230	102.237	0	102.237	0.9282	0.00012	2.04173	91.7802	44.9522	0.55054	0.12321	1000+
1.120	103.37	0	103.37	NA.	0	0	0	0	0	0	NA

Wasteload Allocations

Name	Permit Nu	ımber							
Keyrock Jones	PA0219	339							
				AFC					•
7-10: CCT (mi	in) 15	PMF	0.25	Analysis	pΗ	7	Analysis	Hardness	100
Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef		WQC (µg/L)	WQ Obj (µg/L)	WLA (μg/L)
TOTAL IRON	·	0	0	0	0	_	NA	NA	NA
DISSOLVED IRON	Į.	0	0	0	0		NA	NA	NA
ALUMINUM		0	. 0	0	0		750	750	4806.277
BARIUM		0	0	0	0		21000	21000	134575.8
			c	FC					
CCT (mir	1) 720	PMF	1	Analysis	pH 7	,	Analysi	s Hardness	100
Parameter		Conc.	Stream CV	Trib Conc.	Fate Coef		WQC	WQ Obj	WLA
									(μg/L)
TOTAL IRON	,		-	-	-		1500	1500	33950.22
DISSOLVED IRON							NA	NΔ	NA
DIOCCEVED INCIN		Ū	Ū	J	Ů		1471	101	121
ALUMINUM		0	0	0	0		NA	NA	NA
BARIUM		0	0	0	0		4100	4100	26274.32
	•		Т	нн					
CCT (min	720	PMF	0.25	Analysis	pH N	ΙA	Analysi	s Hardness	NA
Parameter		Conc	Stream CV	Trib Conc	Fate Coef		WQC	WQ Obj	WLA
		(µg/L) -		(µg/L)			(µg/L)	- (µg/L)	(µg/L)
TOTAL IRON		0 -	0	0 .	0	•	NA	NA	NA
DISSOLVED IRON		0	0	o d	0		300	300	1922.511
ALUMINUM		0	0	0	0		ŅA	NA	NA
BARIUM		0	. 0	0	0		2400	2400	15380.09
			C	CRL					
CCT (min	720	PMF	0.25					-	
	Keyrock Jones 7-10: CCT (min Parameter TOTAL IRON DISSOLVED IRON ALUMINUM BARIUM CCT (min Parameter TOTAL IRON DISSOLVED IRON ALUMINUM BARIUM CCT (min Parameter TOTAL IRON DISSOLVED IRON ALUMINUM BARIUM ALUMINUM BARIUM DISSOLVED IRON ALUMINUM BARIUM	Keyrock Jones PA0219 7-10: CCT (min) 15 Parameter TOTAL IRON DISSOLVED IRON ALUMINUM BARIUM CCT (min) 720 Parameter TOTAL IRON DISSOLVED IRON ALUMINUM BARIUM CCT (min) 720 Parameter TOTAL IRON DISSOLVED IRON ALUMINUM BARIUM CCT (min) 720 Parameter TOTAL IRON DISSOLVED IRON ALUMINUM BARIUM BARIUM	Keyrock Jones PA0219339 7-10: CCT (min) 15 PMF Stream Conc (μg/L) TOTAL IRON 0 DISSOLVED IRON 0 0 ALUMINUM 0 PMF Stream Conc. (μg/L) Parameter Conc. (μg/L) Conc. (μg/L) TOTAL IRON 0 WQC = 30 (μg/L) DISSOLVED IRON 0 PMF Stream Conc. (μg/L) Parameter Conc. (μg/L) Stream Conc. (μg/L) TOTAL IRON 0 PMF Stream Conc. (μg/L) TOTAL IRON 0 O DISSOLVED IRON 0 O ALUMINUM 0 O ALUMINUM 0 O BARIUM 0 O	No.25	Keyrock Jones PA0219339 Factor Factor	Name	New York Jones PA0219339	National Page	National Page

Wednesday, June 27, 2012

Version 2.0c

Page 1 of 3

Wasteload Allocations

	RMI	.Name	Permit Number							
_	2.23	Keyrock Jones	PA0219339							
		Parameter	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
		TOTAL IRON	0	0	0	0	NA	. NA	NA	-
		DISSOLVED IRON	0	0	0	0	NA	NA	NA	
		ALUMINUM	0	0	0 ′	0	NA	NA .	NA	
		BARIUM	0	0	. 0	0	NA	NA	NA.	

Wasteload Allocations

RMI	Name	Permit Number
2.23	Keyrock Jones	PA0219339

Recommended Effluent Limitations

SWP Basin	Stream Code:			<u>Stream</u>	<u>Name:</u>		
18D	43979			BLACKLIC	K CREEK		•
RMI	Name		rmit mber	Disc Flow (mgd)			
2.23	Keyrock Jones	PA02	19339	0.6000	_		
		Effluent Limit			Max. Daily	Most S	tringent
I	Parameter	(µg/L)	Gove Crite		Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
ALUMINUM		333	INP	UŢ	519.534	3080.63	AFC
BARIUM		3380	INP	UT	5273.343	15380.09	THH
DISSOLVED	IRON	46	INP	UT .	71.767	1922.511	THH

INPUT

125

195.02

33950.22

CFC

TOTAL IRON

	Flow	TDS Concentration	TDS Loading
	(mgd)	(mg/L)	(lb/day)
Average	0.04	5187.31	1,731
Maximum	0.6	5900	29,524

FLOW (mgd) x CONCENTRATION (mg/L) x 8.34 = LOADING (lb/day) $0.54 \times 4153 \times 8.34 = 33,327$

Osmotic Pressure Effluent Limit Calculation

Variable	e Definition	Variable	Value	Source
Q ₇₋₁₀	7 day low flow with a recurance frequency of 10 years.	07-20	19 ft³/s	USGS Gage #03083100 Jacobs Creek at Jacobs Creek, PA
LFY	Low Flow Yield	DĄ	390 mi²	USGS Gage #03083100 Jacobs Creek at Jacobs Creek. PA
DA	Drainage area at the USGS gage.	DA	409.8 mi ²	USGS Streamstats (streamstats.usgs.gov)
DA	Drainage area at the point of discharge	PMF	0.25	ВРЈ
ď	Stream Flow	ď	0.9283 ft³/s	Permit application.
ď	Stream Flow at Point of Compliance	Xus	~0 mOs/kg	Unknown, assumed 0.
PMF	Partial Mix Factor	× _{ds}	50 mOs/kg	Pa. Code Chapter 93.7
3	Discharge Flow	×″	13,800 mOs/kg	Permit application.
Xus	Upstream Concentration			The second secon
×	Downstream Concentration			
×	Discharge Concentration in Permit Application			
×	Daily Maximum Effluent Limitation.			

To calculate daily maximum: LFY= Q_{7-10}/DA_g LFY=19 ft $^3/s$ / 390 mi 2 LFY= 0.049 ft $^3/s$ / mi 2

Q_s=LFY*DA_d Q_s=0.049 ft³/s / mi² * 410 mi² Q_s= 19.96 ft³/s

 $Q_s' = Q_s * PMF$ $Q_s' = 19.96 \text{ ft3/s} * 0.25$ $Q_s' = 4.991 \text{ ft}^3/s$

 $(Q_s' + Q_d)^* X_{ds} = X_d^* Q_d + X_d^* Q_s'$ $(4.991 \, \text{ft}^3/\text{s} + 0.928 \, \text{ft}^3/\text{s})^* 50 \, \text{mOs/kg} = X_{d \, \text{mOs/kg}}^* 0.928 \, \text{ft}^3/\text{s} + 4.991 \, \text{ft}^3/\text{s} * 0 \, \text{mOs/kg}$ $X_d = 318.8 \, \text{mOs/kg}$

Control (TSD). The percentage exceedance probability is the 99th percentile as designated in Pa Code Chapter 96. A sample size of 4 To calculate monthly average: Formulas taken from table 5-3 in the Technical Support Document for Water Quality Based Toxics was used to represent weekly sampling.

Maximum Daily Limit
Average Monthly Limit

109.6 mOs/kg = 1.56 AML = 204.4 mOs/kg

AML